Broadening Middle-School Students’ Images of Science and Scientists

Diandra L. Leslie-Pelecky,¹ Gayle A. Buck,² and Angela Zabawa³

¹ Department of Physics & Astronomy and Center for Materials Research & Analysis, University of Nebraska – Lincoln
² Department of Teaching, Learning and Teacher Education, University of Nebraska – Lincoln
³ Lincoln Public Schools

Supported by the National Science Foundation
Student Stereotypes

“...a man who wears a white coat and works in a laboratory...is elderly or middle aged and wears glasses...wears a beard...is surrounded by equipment...[and] spends his days doing experiments”

Mead and Mertraux, 1957
Student Stereotypes

Students respect scientists...

... but they don’t see themselves as scientists

• Why?
 – Career choices
 – Public opinion on science policy

• Solution?
 – Scientists in K-12 schools!
Project Fulcrum

• NSF GK-12 Program
 – 4th year
 – Grades 3-8
 – Lead teachers team with a math, science or engineering graduate-student scientist
 – Scientist in one school for the entire year

• Prior research: scientists in schools
 – Highly dependent on specific scientist
 – Changing image vs. broadening image

Student Attitudes Project

A quarter-long project designed to broaden student attitudes about science and scientists

• Teachers
 – Research attitudes of their specific students
 – Design a project to meet those needs
 – Evaluate
 – Document and disseminate

• Graduate student-scientists
 – Identify resources
 – Help execute project
Pre-Project Research

• Important!
 – Teachers and scientists often could predict student answers
 – but were surprised at reasons for those answers

• No templates
 – Projects based on teacher research & student feedback
 – Caused some anxiety
Pre-Project Research

- Image of Science and Scientists Survey
- Teacher-generated open-ended questions
 - Where do people do science?
 - Name different types of scientists
 - What are important characteristics for scientists to have?
 - Would you want to be a scientist? Why or why not?
Types of Projects

Although projects were specialized to each situation, they fell into three general categories

- Scientists
- People who use science, but may not be ‘scientists’
- Developing science skills
Scientists

• Scientist visits
 – Ability for students to ask questions
 – Have students guess what type of scientist
 – Have students identify which visitors are scientists

• Research on scientists
 – Different fields of science, ethnicities, genders, time periods and countries

• Combined research and visits
 – Research allows students to prepare questions for visiting scientists
People Who Use Science

• Role models and science
 – How does a role model in your life use science or math?
 – Research a scientist and make a Venn diagram comparing how the scientist is similar to your role model.

• What jobs do NOT use science?
 – List jobs that use science and jobs that don’t
 – Share with the class and come to a consensus
 – Are there jobs that don’t use science (or math?)
Science Skills

• Developing student questioning skills
 – Role of questions in the scientific method
 – What makes a good question?
 – Develop questions to ask visiting scientists
 – Visiting scientists discuss questions in their fields, including their own research questions

• Problem solving in science
 – Role of problem solving in science
 – How do you problem solve in your everyday life?
 – Ask visiting scientists how they use problem solving in their jobs and their lives.
Formative Assessment

• Discussed at some group meetings

• Modified projects
 – Student feedback: Am I meeting my goals?
 – Colleague feedback: Can I adapt other good ideas to my needs?

• Support from project organizers
 – Changing your project is OK
 – Don’t compare your project to others’ projects
 – Don’t assume you know what your students are thinking – ask.
Impact on Students

• Hard to assess specific impact of project

• Anecdotal evidence from teachers
 – Broader vision of what scientists do, where they work and necessary skills
 – Significant improvements in some individual students’ attitudes toward science/scientists
 – Presence of GK-12 scientist on a regular basis has largest impact

• Image of Science and Scientists Survey
 – Highly gender dependent
 – Very school specific
Impact on Teachers

• Majority felt project worthwhile doing
 – “I wouldn’t necessarily do an entire project on my own if I weren’t part of Project Fulcrum, but now I know where in the curriculum I can emphasize these issues”.

• Major challenge: balancing ‘nature of science’ vs. content knowledge on standardized tests, pacing charts, etc.
Impact on Teachers

• Emphasis on research showing up elsewhere
 – More efforts to find out what students know before planning lessons and projects.
 – Formative and summative assessment
 – Teachers realize flexibility is necessary (and good)

• Evolution in goals of repeat teachers
Impact on Scientists

• Ideal project for involving scientists
 – Minimal time commitment, but some preparation is necessary
 • What are the goals of the project
 • How long should you be there?
 • What do you need to bring or be prepared to do?
 – Supported teachers’ goals

• Are scientists ready to be ‘Role Models’?
 – Selling science vs. painting a realistic picture
 – Questions – some are very personal and highly gendered
Impact on Scientists

• Lots of surprises
 – Firm stereotypes at lower grades
 – ‘Scientists don’t like music’
 – ‘Scientists don’t dance’
 – ‘Scientists don’t even watch TV’
 – ‘All scientists like Star Trek’
 – ‘Scientists can’t have families because they don’t make enough money to support them’

• Surprised by impact of movies and TV

• Re-emphasized to scientists why it is important for them to be there and what role they can play
Suggestions

• Teachers should determine
 – Timing, duration, type of project, goal, relationship to curriculum…

• Research before, during and after
 – Don’t start planning until you determine needs
 – Adapt as necessary

• Support
 – Teachers should share ideas, but not compare projects
 – Avoid templates
 – Expertise